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Abstract

Landmarks and keypoints are an important intermediate representation for image

understanding and reconstruction. Although many supervised approaches exist,

many of them require labels of the target domain, which exist for humans, but only

for sparse keypoints and not for the breadth of object and animal classes present

in our rich world. We propose a self-supervised approach for discovering land-

marks from unstructured image collections by disentangling pose and appearance

of object parts. In particular, we propose a hierarchical structure that helps to find

more meaningful keypoint locations. We demonstrate that our simplifications and

hierarchical extensions of prior work are effective quantitatively and qualitatively

in 2D keypoint estimation and image modification operations tasks. Our approach

eases the discovery of objects and their parts in domains for which no labeled data

exist and thereby eases downstream tasks, such as behaviour classification for neu-

roscience applications, and intuitive image editing.
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Lay Summary

Learning image representations is a fundamental task in Computer Vision, affect-

ing quality of many other tasks such as object detection, motion transfer, image to

image translation and pose estimation. A problem with common entangled repre-

sentations is their lack of interpretability as they are usually output of a black-boxed

neural network. Therefore, learning to disentangle and represent the independent

latent characteristics of objects is of a high importance to enforce interpretabil-

ity to image representations. Pose, appearance and object parts are some of these

latent factors that that we are interested to encode in this work. We propose a

new method, called HPD (Hierarchical Part-based Disentanglement), for learning

structured object parts alongside with disentangling their spatial and appearance

factors. Training needs no annotations or prior knowledge on any of the factors

or object classes, and can be applied to any image dataset without any limitations.

We demonstrate that our model provides an interpretable latent space that can be

used for selective image modification combining pose and appearance from differ-

ent images to synthesize novel images. In addition, the learned part-based repre-

sentations could be used for the task of landmark detection where no annotations

are available. We qualitatively and quantitatively evaluate the effectiveness of our

model on two sets of data.
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Chapter 1

Introduction

Building algorithms that make sense of an image by decomposing it into parts and

their appearance [35] is not only an intellectual endeavor but has practical utility.

The position of objects, animals, persons, and their parts is an essential building

block for automated behaviour analysis in neuroscience, it yields performance in-

dicators in sports and medicine, and serves as control points for image editing. For

understanding images of humans, supervised approaches are trained on massive

datasets curated with millions of pose annotations [4, 17]. However, these do not

generalize well to new settings where annotations are scarce, e.g., to animals or

persons with unusual apparel.

To make automated pattern recognition adaptable to new domains, we pro-

pose an algorithm for disentangling images of humans and animals into the spatial

location of their parts (pose) and their size (shape) and color (appearance) by us-

ing a new hierarchical formulation. Our structured representations are designed

to provide additional meaning to the discovered parts and leads to more reliable

localization.

The recent machine learning and computer vision literature is rich of methods

with disentangling images into different factors of variation [14, 38, 43, 45]. We

follow the stream of methods that use an auto-encoder framework with a structured

latent space to explicitly separate pose, shape, and appearance into factored latent

encodings. Because the number of parts is limited and their embedding is low-

dimensional with localized spatial support, the encoder and decoder learn jointly
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to attend to the most important image parts that occur frequently in the training

set. For human pictures, this results into separate parts being assigned to torso,

limbs and head. While no one-to-one correspondence between anatomical and

discovered body parts can be enforced without additional supervision, in a self-

supervised approach, the learned representations can be used to track the position

of a part in a video or to synthesize new appearances by re-combining parts and

appearances from different pictures.

Existing approaches are difficult to train since multiple loss functions and cus-

tom neural network layers need to be combined to facilitate disentanglement [10,

35, 38]. Our contributions are two-fold. First, we simplify an existing self-super-

vision pipeline by replacing an equivariance loss, first introduced by Lenc et al. [31]

and used by similar methods for disentangled representation learning [35, 59], with

a randomized switch in the control flow, thereby eliminating one of the necessary

loss terms, frees the model from further tuning of training objective. We also re-

duce the model complexity by showing that a simpler encoder suffices in almost

all application scenarios. Second, and most importantly, we enforce a child-parent

relationship to the parts at training time. This hierarchy gives the discovered pose

a new semantic level and supports the training of more fine-grained parts without

adding considerable number of parameters to the model.

We evaluate our approach on the task of unsupervised landmark detection, im-

age reconstruction and image editing on two datasets. We demonstrate that our

contributions lead to accurate part localization and use established fashion datasets

to showcase the editing capabilities qualitatively.
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Chapter 2

Related Work

Our approach builds upon ideas from general representation learning, from learned

pose, landmark, and shape models, as well as from existing hierarchical represen-

tations, for which we review the most related ones in the following.

2.1 Disentangled Representation Learning
Disentangled representation learning has become a hot topic in Computer Vision,

as it adds interpretability to the black-boxed representations we get from the com-

mon image encoding methods [27, 47, 50]. The disentangled representations give

us a sense of what factors of images a neural network thinks as the most important

ones, and how it separates them. More importantly disentangled representations

enable synthesizing novel images or image modifications by fixing some factors

and changing the rest. Mathieu et al. [38] proposed a conditional generative model

trained with adversarial loss to disentangle the hidden factors within a set of labeled

observation. Tran et al. [52] and Peng et al. [42] disentangle pose and identity of

human faces in a supervised manner. On the other hand, there are some GAN-

based methods [9, 48] and VAE-based methods [18, 19, 28, 29, 56] for learning

disentangled representations in a completely unsupervised manner. All the men-

tioned methods enforce disentanglement directly into the design of models. On

the other hand, Rombach et al. [43] factorizes learned representations of existing

models. Similar to these papers, we also learn disentangled representations; in

3



contrast we do not use adversarial loss or VAE objective which are challenging

to train. Instead, we propose a non-variational auto-encoder framework for learn-

ing disentangled representations, trained in an unsupervised manner, only using

the reconstruction loss that leads to a stable training process in comparison with

GAN-based methods.

2.2 Pose and Appearance Disentanglement
Pose (shape) and appearance are two of the most important factors of images as

they define the object spatially and semantically, and recently a lot of research has

been done on their disentanglement. To learn disentangled pose and appearance,

the models generally condition generative models on pose, shape or keypoints in-

formation. Many of them commonly assume the availability of pose or keypoints

which are extracted by a pretrained pose or keypoints detector [1, 6, 13, 14, 36, 37,

45]. Although, these models work well, the constraint of observable pose and key-

points is strong that makes these models just applicable when a pre-trained pose

detector is available for the domain like human bodies and faces. However, our

model does not need any prior knowledge about the pose, shape, and keypoints.

It discovers some parts that reflect visual concepts of images in a self-supervised

manner. Therefore, it can be applied on any arbitrary-complex domain. Some other

methods need multiple frames from videos [10, 22, 23] or pairs of images differ-

ent in just one factor and the same in rest [49], specifically pairs of images from

a single object but with different poses [15]. Such datasets are hard to obtain. In

contrast, our model only needs single images, and at the same time it can also be

generalized for videos by getting video frames as the input.

2.3 Discovery of Object Parts and Landmarks
Object parts or landmarks are one of the most important and common intermediate

representations in computer vision, as they break objects into a set of meaningful

components that focus on key regions of an object. Many approaches learn land-

marks and parts in discriminative tasks such as image classification [5, 26, 30, 46],

and pose estimation [8, 57]. The parts that are learned in a discriminative task

emerge based on their semantic relation to the object and are optimized to work
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best for that task and do not necessarily encode any information about the appear-

ance, shape or pose. In contrast to these methods, our model learns the parts in

an image modeling task in a way that for each part we learn the disentangled pose

and appearance. The closest approach to ours is Lorenz et al. [35], which similarly

learns the disentangled shape and appearance of the parts in an auto-encoder frame-

work trained with the equivariance, adversarial and reconstruction loss. However,

firstly, our model is just trained with the reconstruction loss which is more robust

and easier to optimize and more importantly it learns the parts in a hierarchical

manner that we show leads to predicting more meaningful parts.

2.4 Hierarchical Representation Learning
Our hierarchical approach is closely related to the methods that learn structure of

objects or the hierarchy of object parts [39]. Some of these methods need super-

vision to learn the hierarchy of parts. Grass model [32] needs prior knowledge

in terms of segmentation of each shape into parts and StructureNet [40] needs se-

mantic labels for each part. In contrast, our work is totally self-supervised without

needing any sort of annotations. We assume a predefined hierarchy for the parts

and enforce it to the model. Some of the unsupervised approaches for inferring the

hierarchy and structure of parts take use of motion by looking at the videos and

analyzing it [16, 21, 25, 55]. Unlike these approaches, we pre-define the hierarchy

of parts as a binary tree structure and train it using only single images, without

needing multiple frames and timestamps from videos.

Esmaeili et al. [12] proposes an unsupervised approach that leverages a two-

level hierarchical objective to disentangle independent axes of variation of data by

introducing a variational auto encoder framework. The disentanglement happens

in a latent space without explicit spatial separation, which, however, is required

for the intuitive editing and landmark discovery we target. Most relevant to ours,

Paschalidou et al. [41] learns the primitive parts and their hierarchical structure

from single images in the form of a binary tree. But unlike ours, they require 3D

mesh models for supervision.
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Chapter 3

Method

At a high level, our method learns to reconstruct an image from its pose and ap-

pearance, where the pose is extracted from an appearance transformed image and

the appearance from a pose transformed image. This approach is similar to some

recent methods [11, 28, 35], which we extend in the following with simplifications

and a hierarchical extension.

As an intuition let us assume we have a triplet of images (x,x1,x2) where x and

x1 share the same appearance, and x and x2 share the same pose. We also assume

that each image can be generated by a decoding function D given its pose denoted

by Φpose(x) and appearance Φapp(x). We write,

x = D(Φapp(x),Φpose(x)). (3.1)

As x and x1 share the same appearance, we have Φapp(x) = Φapp(x1), and similarly

for pose we have Φpose(x) = Φpose(x2). Hence, we can rewrite Eq. 3.1 as:

x = D(Φapp(x1),Φ
pose(x2)). (3.2)

In other words, the image x can be reconstructed by the appearance of x1 and pose

of x2. But the problem is that a dataset including triplets having mentioned con-

straints is hard to obtain, and it is not always available. In our method, we construct

x1 and x2 by applying spatial transformation Ts and appearance transformation Ta

on x, respectively.
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3.1 Problem Formulation
Similar to Lorenz et al. [35], our goal is to learn a representation for an image x,

denoted by Φ(x) which factorizes the image into its forming parts:

Φ(x) = (Φ1(x),Φ2(x), . . . ,Φk(x)), (3.3)

where k denotes number of parts and Φi(x) is the representation of ith part of image

x. Furthermore, we want to disentangle the appearance and pose of each part.

Hence, the part representation Φi(x) needs to be a combination of its appearance

Φ
app
i (x) and Φ

pose
i (x), as in the following formula:

Φi(x) = (Φapp
i (x),Φpose

i (x)). (3.4)

We know that the appearance representation should be invariant to change in ap-

pearance. Accordingly, if we apply spatial transformation Ts on x we should have

Φapp(x) = Φapp(Ts(x)). And similarly the pose representation should be invariant

to change in pose, in a way that: Φpose(x) = Φpose(Ta(x)), where Ta depicts an

appearance transformation. In conclusion, by applying invariance constraints, we

can rewrite the representation of each part (Eq. 3.4) as:

Φi(x) = (Φapp
i (Ts(x)),Φ

pose
i (Ta(x))), (3.5)

which justifies using the appearance transformed images and spatially transformed

images in our pipeline. Eq. 3.5 is similar to Eq. 3.2, but x1 and x2 are not given,

instead we construct them by applying pose and appearance transformations on

a single image x. Finally, the image representation Φ(x) would be an assembly

of pose and appearance of its parts, respectively extracted from the appearance

transformed image and the pose transformed image. Hence, Eq. 3.3 can be written

as:

Φ(x) = [(Φapp
i (Ts(x)),Φ

pose
i (Ta(x)))]ki=1, (3.6)

where [ ] notation denotes the set of parts.

7



Spatial
Transformation

Ta

Appearance
Transformation

Ta

Text

Decoder
D

Pose Encoder
E

Pose Encoder
E

Estimate Gaussian
Distrubutions

Estimate Average
Colors

for Each Gaussian
Distibution

*
255 230 204

171 190 255

...... ...... ......

64 64 64

71 39 2

Pose	Stream

Appearance	Stream

Reconstruction	Stream

Figure 3.1: Pipeline of PD. The pose stream starts from the appearance trans-
formed image Ta(x), from which the encoder predicts a set of k activa-
tion maps Φ̄

pose
i (x). Then, the Gaussian distributions Φ

pose
i (x) which

represents parts shape are estimated as the way explained in Sect. 3.2.1.
The appearance stream starts from giving the spatially transformed im-
age Ts(x) to the encoder for predicting part activation maps of that. This
path continues by estimating the appearance vector Φ

app
i (x) for each

part. In the reconstruction stream, first each part is multiplied by its
color. Then, the blobby image xb is created by Eq. 3.10. Finally, xb is
given to the decoder to reconstruct image x.

3.2 Baseline Model
In this section, we introduce the first version of our model termed as Part-based

Disentanglement (PD) and explain our auto-encoder framework for encoding im-

ages into pose and appearance disentangled parts, where all the parts are in the

same level. An overview of PD is shown in Fig. 3.1. For designing PD, we start

by simplifying Lorenz et al. [35] and predict object parts in a flat, unstructured

representation. We subsequently extend it by adding a hierarchical extension that

arranges the predicted parts in a binary-tree hierarchical structure, in a way that

at each level of hierarchy each parent part is broken into two finer, more detailed

children parts. We name this version of our model HPD (Hierarchical Part-based

Disentanglement).

3.2.1 Pose Stream

The goal of the pose stream is to predict a set of parts for a given image, in terms

of a set of 2D Gaussian distributions which represents the shape and pose of the in-

put image, denoted by Φpose(x) = [Φpose
i (x)]i. In this stream, we start by applying
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an appearance transformation Ta on the input image x to enforce pose representa-

tions invariance to change in appearance. The appearance transformation Ta simply

changes the color of the image as a change in the appearance and we discuss its

details in Sect. 3.4. The appearance transformed image is depicted by Ta(x). A

deeplabv3 [7] encoder E predicts a multi-channel activation map that encodes each

part as a channel, shown by Φ̄
pose
i . Deeplabv3 performs well for image semantic

segmentation task, which makes it suitable for our model. Because in this stream

the pose encoder wants to assign each pixel to only one object part which is similar

to image segmentation task.

Predicting activation maps from Ta(x) and not directly x, prevents the pose

stream from observing any information about the appearance of the original image,

therefore it helps the disentanglement of pose. We assume that each object part has

the spatial footprint of a multivariate normal distribution computed by Eq. 3.7.

N (x; µ,ΣΣΣ) = exp
(
−1

2
(x−µ)ΣΣΣ−1(x−µ)T

)
, (3.7)

where µ is the mean vector and ΣΣΣ is the covariance matrix. Hence, we can

estimate a Gaussian distribution Φ
pose
i (x) from each activation map. We com-

pute Gaussian parameters µ and ΣΣΣ as the weighted mean of the normalized ac-

tivation map and the covariance matrix, respectively. µ can be interpreted as the

center point of object part and ΣΣΣ specifies the part’s direction and size. Consid-

ering parts as Gaussians and not explicitly as a set of activation maps enforces a

kind of regularization into the model that helps it to predict more localized and

meaningful parts, specifically when activation maps are noisy and scattered. At

the end of this stream, we end up having k 2D Gaussian distributions, denoted by

[Φpose
i (x)]ki=1, each representing one region of the image, and represents pose of

the image, Φpose(x), as a whole.

3.2.2 Appearance Stream

The goal of this stream is to predict an appearance vector Φ
app
i (x) for each of the

detected parts, Φ
pose
i (x) in Sect. 3.2.1. The set of appearance vectors, denoted

by [Φapp
i (x)]ki=1 act as an appearance representation Φapp(x) for the given image

x, where k denotes the number of parts. In this stream, we start with applying
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a spatial transformation Ts on image x which deforms object’s pose, and makes

appearance representation invariant to change of pose and shape. We explain the

details of the Ts in Sect. 3.4. Ts(x) denotes the spatially transformed image. Using

the same encoder E as Sect. 3.2.1, firstly, we predict a set of activation maps for

Ts(x), depicted by Φ̄
pose
i (Ts(x)). Note that, the appearance vectors predicted from

image x and image Ts(x) should be the same, as the appearance encoding method

needs to be invariant to object spatial deformations. This justifies predicting the

appearance vectors from the spatially transformed image Ts(x) and not the original

image. Secondly, we estimate Gaussian distributions as the same way as described

in Sect. 3.2.1, denoted by Φ
pose
i (Ts(x)). Unlike Lorenz et al. [35] that predicts d-

Dimensional appearance vectors by a separate appearance encoder, our PD uses

the 3-channel RGB color of pixels as an appearance feature map. This technique

simplifies the model and reduces the number of model’s parameters significantly

in comparison with the methods with more complex encoders, although makes the

model limited to reconstructing simple appearances. To predict a 3-channel color

for each part, we average pool colors of the spatially transformed image at all

locations where part i has positive activation distribution, written as:

Φ
app
i (x) =

width
∑

u=1

height
∑

v=1
Ts(x).Φ

pose
i (Ts(x))[u,v]

width
∑

u=1

height
∑

v=1
Φ

pose
i (Ts(x))[u,v]

, (3.8)

where [u,v] denotes the pixel location. Eq. 3.8 simply assigns the average color of

each image region to the part representing that region. At the end of this stream,

we would have k 3-channel RGB colors, individually denoted by Φ
app
i (x) each

corresponds to one part Φ
pose
i (x), that represents the appearance of x as a whole:

Φapp(x) = [Φapp
i (x)]ki=1.

3.2.3 Reconstruction Stream

The goal of this stream is reconstructing image x, given the set of parts [Φpose
i (x)]ki=1

and their appearances [Φapp
i (x)]ki=1. To this end, we combine the pose representa-

tion Φpose explained in Sect. 3.2.1, and the appearance representation Φapp de-

scribed in Sect. 3.2.2. As written in Eq. 3.9, we multiply each 2D Gaussian distri-
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bution by its corresponding 3-channel RGB color to achieve colorful 2D Gaussian

distributions referred as blobs, where each blob represents a visual component of

image x, denoted by Φi(x).

Φi(x) = Φ
app
i (x) ·Φpose

i (x), (3.9)

where � operation denotes element-wise multiplication. Note that, the appear-

ance representations are 3-d and the pose representations are |W | × |H|, where

|W | and |H| are image width and height respectively. Therefore, at first we tile

these representations to the size of 3×|W |×|H| to be compatible for elementwise-

multiplication.

For example, as shown in Fig. 3.2, for the human body, the colorful blobs

would be located at arms, head, torso, etc. Afterwards, we create a single RGB

image, depicted by xb, from the set of k colorful blobs to enforce more regulariza-

tion to the model. xb is created by taking the maximum of all blobs as written in

Eq. 3.10, and it is the sole input of the decoder mD. Giving the max of all Gaussian

distributions, xb, to the decoder instead of all of them implicitly activates only one

Gaussian distribution for reconstructing each image region. Therefore, in practice,

only one Gaussian distribution incorporate in reconstructing one image region, and

the model is able to ignore some of the unnecessary information or noise of the

other Gaussian distributions. In addition, taking the max of all 2D Gaussian dis-

tributions makes them not overlap, not having two different activation maps active

for the same body region. Otherwise, just one of the identical or similar Gaussian

distributions would be visible in xb, incorporating to the reconstruction which is a

waste for the model.

xb = max
[
Φi(x)[u,v]

]
, (3.10)

where i = 1 . . .k and Φi(x)[u,v] denotes the value of the 2D Gaussian distribution i

(Φi(x)) at location [u,v].

A U-net [44] decoder D is used to reconstruct image x from xb. The recon-

structed image is denoted by: x̂ = D(xb). By minimizing the l2-norm of x and x̂,

the model learns to concentrate on object parts that are unambiguous and more
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Figure 3.2: Blobs (colorful Gaussian distributions) The first column shows
sample images, the second column shows the part activation maps pre-
dicted by the encoder E, and the last column shows the colorful Gaus-
sian distributions which we refer as blobs. For full body human images
the blobs are located at torso, feet, legs, shoulders, etc.

important for reconstruction. To achieve sharper images, it is a standard tech-

nique to train the model with a combination of reconstruction loss and adversarial

loss [1, 35]. However, using adversarial loss needs defining a new adversarial task
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and training a discriminator. As our task is not image generation, we preferred to

use a combination of l2-norm and perceptual loss that produces pleasing results,

following Xu et al. [54] and Jakab et al. [22]. Instead of comparing raw pixel val-

ues directly, the perceptual loss, first proposed by Johnson et al. [24], compares

features extracted from multiple layers of a deep network, which in our case is

VGG-16. Our final objective function is:

lrec = ‖x− x̂‖2 + β lperc(x, x̂), (3.11)

where β denotes the weight of the perceptual loss.
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Figure 3.3: Swapping Technique. Using swapping technique, at each train-
ing step, we either follow the upper path or the lower path, which their
only difference is that the role of image x and transformed image Ts(x) is
swapped in the lower path, but both of the paths follow the same process
shown in Fig. 3.1.

3.2.4 Swapping Technique

We expect the pose encoder mE to track the object shape consistently, predicting

a consistent set of parts even under object deformations. That means the predicted

parts from the spatially transformed image need to be the transformed version of
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parts extracted from the original image, which can be written as:

Φ
pose
i (Ts(x)) = Ts(Φ

pose
i (x)). (3.12)

This equivariance constraint was first proposed by Lenc et al. [31], and forces

the encoder E to capture consistent object parts when the shape changes. Many

similar methods [35, 51, 59] enforce this constraint by adding an additional term

to the training objective named as equivariance loss. Adding the equivariance term

to the loss function needs further tuning of the training objective. Instead of ex-

plicitly training the model with the equivariance loss, we propose a simple trick

for training the model named as swapping technique, which implicitly enforces the

equivariance constraint to the model.

In this version of training, PD randomly swaps the role of x and Ts(x) in each train-

ing step as shown in Fig. 3.3. As a result, half of the times in the training process

we extract the parts from the appearance transformed image and predict their col-

ors from the spatially transformed image to reconstruct the original image. Instead,

half of the times we extract the parts from the appearance transformed version of

the spatially transformed image and extract the part colors from the original image

to reconstruct the spatially transformed image. The intuition behind this trick is

that x can be interpreted as the deformed Ts(x). As a result, at each training step ei-

ther the original image x or the spatially transformed image Ts(x) is reconstructed.

This technique enables us to train only with the reconstruction loss, which leads to

more robust training than the proposed objective function of Lorenz et al. [35]. An

overview of the training process using the swapping technique is shown in Fig. 3.3.

3.3 Hierarchical Model (HPD)
In this section, we discuss our hierarchical extension to PD, that predicts pose and

appearance disentangled parts for an object in a hierarchical manner. We start with

a fixed number of parts then in next levels of hierarchy, we break each part into two

children parts in a binary tree structure. As a result, if we start from k0 parts, and

have h levels of hierarchy, at the the end we end up with (2h−1)k0 structured parts.

We chose binary tree because of its simplicity, however an unbalanced non-binary

tree makes more sense as some parent parts are complex and need to be broken into
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Figure 3.4: Pipeline of HPD. In this case, the pipeline starts with the pose
encoder E predicting 45 activation parts. The first 15 of them (upper
image) are parent activation parts and 30 are the children parts (lower
image). The hierarchical loss would be computed by this activation
maps following Eq. 3.13. Then, the Gaussian distributions and the ap-
pearance vectors are estimated to create the blobby images for each level
of the hierarchy. The top blobby image corresponds to the first level and
the bottom one corresponds to the second level of the hierarchy. Each of
the blobby images is given to a decoder independently for reconstruct-
ing the image.

more than two children parts, and in contrast some parts are too simple and do not

even need to be broken in further levels. But it is harder to enforce that structure to

the network. In Sect. 4.3, we demonstrate that the structured object parts extracted

by HPD are finer and more accurate which leads to better image reconstruction.

An example of the HPD model architecture consisting of two levels of hierarchy,

having 15 parts at the first level and 30 in the second level is shown in Fig. 3.4. The

children parts are learned dependent on the location of their parents, as we force

their center points to be close to the center point of their parents. We explain the

details of the model in the following sections.

3.3.1 Pose and Appearance Stream

The goal of the pose stream is to learn structured pose and appearance disentangled

object parts, that represent image pose as a whole Φpose(x). As in Sect. 3.2.1, we
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start with applying Ta on x. Then, HPD’s encoder E predicts (2h−1)k0 activation

maps from Ta(x) instead of k activation maps we had in PD. h denotes the total

level of hierarchy and k0 denotes the number of starting parts. We could have

used a separate encoder for predicting activation maps of each hierarchy level, but

to keep the model light-weight, we used one same encoder E for predicting all

the activation maps, which achieved the same performance. Then, we estimate a

2D Gaussian distribution from each activation map, denoted by Φ
pose
i (x). But the

important point is that we wish to enforce a binary-tree structure to the parts, in a

way that each parent part has exactly two children parts. It is obvious that children

of each parent part should be close to each other and to their parent, however not too

close to present overlap. We enforce this constraint by minimizing the euclidean

distance of center points of children parts and the parent’s center point. We denote

this term hierarchical loss. The center point of part i is the µ parameter of the ith

2D Gaussian distribution. Thus, the hierarchical loss can be written as follows:

lhrc =
h

∑
r=1

k0

∑
s=1

(µ(2r−1−1)k0+s−µ(2r−1)k0+2s−1)
2

+(µ(2r−1−1)k0+s−µ(2r−1)k0+2s)
2, (3.13)

where r, s, and k0 denotes the level of the hierarchy, part number in the hierarchy,

and the initial number of parts, respectively. The index of sth part in the hierar-

chy level r is (2r−1− 1)k0 + s, and parts number (2r− 1)k0 + 2s− 1 and number

(2r−1)k0+2s correspond to its children. At the end of this stream, we end up with

(2h−1)k0 structured 2D Gaussian distributions, denoted by [Φpose
i (x)]ki=1, each fo-

cusing on one image region, representing the pose of x as a whole Φpose(x). Note

that the encoder E does not have a hierarchical design but it outputs activation parts

that have a hierarchical structure.

The appearance stream works in the same way as explained in Sect. 3.2.2, but it

predicts (2h− 1)k0 3D appearance vectors Φ
app
i (x) for each Φ

pose
i (x). Again, the

set of the appearance vectors [Φapp
i (x)]ki=1 are considered as appearance represen-

tation Φapp(x) of the given image x.
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3.3.2 Reconstruction Stream

For reconstructing the original image, we combine pose and appearance represen-

tation of parts using Eq. 3.9. But, instead of having only one blobby xb image in

PD, we create one image for each level of hierarchy in HPD. Then, we feed each

image to the decoder for reconstruction. In this way, all parts are incorporated into

the reconstruction of the image exactly once, and there is no bias to parts on any

level of the hierarchy. The rth blobby image is created from the parts present in rth

level of hierarchy by the following formula:

xb
r = maxΦ

app
i (x) ·Φpose

i (x), (3.14)

where r = 1 . . .h , and i = (2r−1− 1)k0 + 1 . . .(2r− 1)k0 + 1. We feed each xb
r to

the U-net decoder D for reconstructing the image x̂. Hence, we have x̂ = D(xb
r ). As

a result, we end up with h reconstructed images that need to be incorporated in the

loss function equally. The reconstruction loss can be rewritten as:

lrec =
1
h

h

∑
r=1
‖x− x̂r‖2+lperc(x, x̂r). (3.15)

The final objective function is a combination of the reconstruction loss 3.15 and

the hierarchical loss 3.13 written as:

lfinal = lrec +α0lhrc, (3.16)

where α0 denotes the weight of the hierarchical loss.

3.4 Transformations
The appearance transformation Ta and the spatial transformation Ts are important

parts of our model. For Ta, firstly we shift the h channel of HSV space by a random

value. After this step, some colors like black and white might still stay the same.

Therefore, we also mix the 3-channel RGB image with a random base color. For

Ts, we use thin plate splines [2] and rotations. Each TPS can be defined by its

control points. We have a set of 6 predefined control points, and to create a Ts for
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each image in the dataset, we randomly assign a weight to each set and linearly

combine all 6 to get the final TPS. In order to not have a bias to left or right poses,

50% of the times, we flip all control points of final TPS along x axis, which leads to

mirrored TPS. Note that flipping the control points does not mirror the transformed

image, but only mirrors the TPS. As the final step, we rotate the result of final TPS

on image, by an arbitrary angle between (−60,60). The combination of all these

steps, would lead to Ts that can deform the shape and pose of a given image.
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Chapter 4

Experiments

In this section we evaluate our model in various tasks including pose and appear-

ance transfer, image reconstruction and landmark detection. In the first section 4.1

we show the qualitative results of PD model for the task of unsupervised part de-

tection on the DeepFashion dataset. In Sect. 4.2 we use the learned disentangled

representations of PD to locally or globally transfer the pose and appearance of

objects and generate novel images. In Sect. 4.3 we compare the results of PD and

HPD model on the part detection and image reconstruction task. Finally, We report

the qualitative and quantitative results on the CelebA dataset in Sect. 4.4.

4.1 Part Detection on DeepFashion
In this section we show the results of part and landmark detection on the Deep-

Fashion [34] dataset, for which no pose annotations are available. In our work, we

only used in-shop clothes images of DeepFashion, but only those that are full-body

and from the front-view. All the images shown in this section are from the test set,

which the model has not seen before. We randomly picked 10% of images as the

test set.

Fig. 4.1 visualizes 15 out of 15 part activation maps of given images, spa-

tially transformed images and appearance transformed images. Activation maps

are learned in a self-supervised manner through an image reconstruction task. We
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Figure 4.1: Part Detection. Visualization of 15 part activation maps for the
given image x, spatially transformed image Ts(x), and appearance trans-
formed image Ta(x). By comparing column 2 and 4 we can conclude
that pose encoder E consistently track object parts even under image de-
formations, however the model is not explicitly trained with the equiv-
ariance loss. In addition, comparison of column 2 and 6 shows pose
invariance to appearance changes.

can see from the resulting activation maps that important keypoints of humans like

the wrists, torso, legs, and feet are correctly detected, even when there is a change

in pose and appearance of the object. Although we do not use a term to enforce

separation of part activation maps, we can see that they are automatically learned

to not overlap, as it leads to lower reconstruction loss and better reconstructed im-

ages. In addition, it is seen that part activation maps of the original image x and

the appearance transformed image Ta(x) are almost identical which demonstrates

that the pose encoder E is invariant to change in appearance. This means that the

changes in the appearance of the person and background do not impact the detected

pose. Furthermore, we can see that activation maps extracted from spatially trans-
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formed images Ts(x) are the spatially transformed versions of the activation maps

detected from the original image. This means that, despite not explicitly using the

equivariance loss proposed by Lorenz et al. [35] during the training, the model cap-

tures the equivariance consraint, by randomly switching the role of x and Ts(x) for

50% of the iterations.

Fig. 4.2 shows our 15 learned 2D Gaussian distributions each acting as a part

representation, and their corresponding predicted landmarks. The second column

depicts all the merged part activation maps [Φ̄pose
i (x)]ki=1 , third column shows the

merged Gaussian distributions [Φpose
i (x)]ki=1 estimated from part activation maps,

and the fourth column shows the blobby image xb, generated by Eq. 3.10. We can

see that xb captures the overall shape of the object correctly, by combining part

shapes and their appearances. We consider center points of part activation maps,

which are µ parameters of Gaussian distributions as our predicted keypoints. With-

out any labels, our model can detect decent keypoints, especially for feet, wrist,

torso, and leg regions.

We trained two versions of our model, one with l2 as the reconstructions loss,

and one with the combination of l2 and perceptual loss (Eq. 3.11). Although, l2 as a

sole loss produces blurry images, we can see its combination with VGG-perceptual

loss leads to sharper and crisper images, especially for challenging parts like faces

and hair. Fig. 4.3 depicts this comparison by visualizing the reconstructed images.

Again, all the images are from the test set.

4.1.1 Limitations

Although, our simplified PD model yields acceptable results for the majority of test

set, there are some cases for which the model fails to predict accurate keypoints or

reconstructions. We will explain these failure case scenarios in the following:

• Complex clothing patterns: As mentioned in Sect. 3.2.2, we do not have an

appearance encoder. Instead, we take image average color over each Gaus-

sian distribution as the appearance vector. This simplification leads to fewer
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Figure 4.2: Part Detection. Visualization of detected unsupervised land-
marks, part activation maps, Gaussian distributions, colorful Gaussian
distributions, and reconstructed images respectively from left to right.
The Gaussian distributions of column 2 are estimated from the part ac-
tivation maps using Eq. 3.7, in a way that the µ of the Gaussian dis-
tributions are the center points of part activation maps, and ΣΣΣ is the
co-variance matrix. The blobby images shown in column 4 depicts mul-
tiplications of parts Gaussian distributions of column 3 by their corre-
sponding color (Eq.3.10).
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Figure 4.3: Image Reconstruction. Comparison of reconstructed images by
using l2 loss and perceptual loss.
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Figure 4.4: Limitations of image reconstruction. The left set shows model
inability to reconstruct complex patterns such as stripes and checkered
patterns. The right set shows model bias to a specific skin color which
has seen most in the training set. Note that, all samples are from the test
set.
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parameters and faster training, however makes the model unable to re-create

complex clothing patterns like stripes, checkered, and polka dots. For these

cases, as the model assigns one color to each part, reconstruction of clothing

lacks detail, as shown in left side of Fig. 4.4. There is a trade-off between

the complexity and size of the model and the amount of detail the model is

able to capture. If we are interested in detailed reconstructions, a separate

appearance encoder is needed to predict an n-D appearance vector per part.

• Bias to light skin color: Another problem is that unfortunately the dataset

is not totally balanced, which causes the model to overfit to some particular

colors for clothing, face and body as depicted in Fig. 4.4. Specifically, there

are many images in the dataset with bare legs. Furthemore, the majority

of the objects have light-color skin. Hence, sometimes in the reconstructed

images we see a light-tone skin color although the given subject has a dark

skin like the first row or the model mistakenly reconstruct bare legs instead

of pants or boots like the other rows of Fig. 4.4.

• White clothing Another problem that impacts the accuracy of predited key-

points negatively is that the model mistakes the white clothing for the back-

ground. In our DeepFashion dataset, all the images have a simple whitish

background. As a result, even without assigning any Gaussian distribution

to the background, model can reconstruct the white background. As a result,

for reconstruction, the decoder simply remembers to set white to any empty

region of the blobby image. And sometimes it does the same for clothing. It

does not assign any Gaussian distribution to white shirts or pants, but already

knows to assign white color to empty regions of blobby image. This might

lead to good reconstruction, but the extra Gaussian distributions are assigned

to meaningless locations, leading to inaccurate and inconsistent keypoints.

Fig. 4.5 visualizes this problem. For the first two rows, we had expected to

have a Gaussian distribution assigned to the torso but instead it is assigned to

somewhere close to the right arm which leads to poor keypoint prediction for

torso. And similarly for the last two examples, we have inaccurate keypoints

for the hips and torso.
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Figure 4.5: Limitations of part detection. Visualization of detected key-
points, part activation maps and colored Gaussian distributions for sam-
ples wearing white clothing. The image shows model’s failure on de-
tecting meaningful keypoints for these cases as it mixes up white cloth-
ing with the background.
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4.2 Pose and Appearance Transfer
Disentangled representations allow image modification and synthesizing new im-

ages by fixing some of the learned factors and changing the rest. In our case,

the disentangled factors are parts, appearance and pose. Therefore, in this section

we explain our set of experiments for evaluating the learned pose and appearance

disentangled representations in the task of local or global Pose and Appearance

transfer. We reported our results on the test set of DeepFashion dataset.

For synthesizing new images, we can get an object appearance and pose from

different source images, then combine the new factors and generate a novel image

which has the appearance of one image and the pose of a different one. In other

words, the model can transfer the appearance or pose from one image to another,

as these two factors are disentangled. Fig. 4.6 shows synthesized images where the

target appearance of all parts are extracted from the left column and target shape of

all the part are extracted from the top row. As seen in the image, the model is able

to synthesize an unseen person in variety of unseen poses or clothing. Note that,

while the model is not trained on pairs of images but single images, it can combine

factors of image pairs.

Furthermore, we learn the appearance and pose factors per part which enables

us to do local changes to specific body parts and control each part independent from

the others. In our approach, not necessarily the whole pose or appearance can be

transferred, but local changes are also possible, which enforces more control over

the image synthesis process. Given an image, we can fix the appearance and shape

of all body parts except for, for example, the head. Then, extracting the appearance

or pose of the head from different images, we can synthesize novel images which

only differ in face appearance or the head shape, but are the same in all other parts.

In Fig. 4.7, the whole pose and appearance representations are extracted from the

top row, except for the pants. For the pants parts, appearance representations are

extracted from the images on left. As a result, in each column, we see one person

in the same pose but wearing different pants. In Fig. 4.8, the opposite experiment

is shown. For all the parts, appearance and pose come from source images (the top
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Figure 4.6: Pose and Appearance Transfer. The image visualizes novel im-
ages which their pose come from the top row and their appearance come
from the left column. Each column depicts one person in various cloth-
ing and different hair colors.
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Figure 4.7: Local Appearance Transfer. Visualization of selective image
editing, where pants appearance of objects in the top row are extracted
from the left column. Each column shows a person having the same
pose and appearance except for the pants.
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Figure 4.8: Local Pose Transfer. Visualization of selective image editing,
where the pose of legs and feet of the object in the top row is changed
according to the left row. The pose representations for legs and feet are
extracted from the left row. Each column shows a person with same
appearance but in different lower body poses.
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row) expert for legs. We extract pose representations of legs and feet from the left

images. As a result, in each column we have on person with the same clothings

who poses only the legs differently.

Note that, as no annotation is used during training, the learned parts mappings

to body regions are not available beforehand. For example, before training we do

not know that which activation maps correspond to legs. They can be learned in any

order. Hence, after the training process, all activation maps need to be visualized

individually so that we can infer the activation maps and body regions correspon-

dences.

4.2.1 Limitations

Although, some decent results are shown in the previous section for pose and ap-

pearance transfer task, the model does not yield good results for transferring pose

or appearance from every random source image to any other image. The appear-

ance source image and the pose source image pairs require to have some conditions,

otherwise synthesized image do not have a high quality. Fig. 4.9 depicts some pose

and appearance transfer failure cases. Firstly, the body parts for both appearance

source image and the pose source image should correspond to each other. As the

model detects the most important regions of an image in a totally self-supervised

way, we cannot enforce the part labels to it. Sometimes, one object region can be

easily be reconstructed by just assigning one Gaussian distribution to it, however

the reconstruction of the same region for other images might need assigning more

Gaussian distributions to capture more details. One example is a bald head versus

a head with long hair. For the bald head just one single part is enough although for

reconstructing the long hair 2 or 3 Gaussian distributions might be needed. Hence,

the part appearances of these two images do not match and cannot be transferred.

In the top rows of Fig. 4.9 we have shown this problem. In the first row, the shirt

part of appearance source image corresponds to the skirt part of the pose source

image which leads to mistakenly transferring the shirt color to the skirt. And in

the next two rows, the feet of the pose source is occluded that leads to mistakenly
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Figure 4.9: Limitations of pose and appearance transfer. Novel images
shown in column 3 are generated by combining the appearance and pose
of two objects in columns 1 and 2. But the model does not achieve
good results for any arbitrarily pairs. In the first set, the model fails
due to parts incorrespondences between two source images. And in the
second set, transferring the appearance of pants to skirts generate is not
successful.
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transferring the shoes appearance of the appearance source to the pants of the pose

source and and not the shoes. Secondly, the clothing types of each pair should

be similar to get decent pose and appearance transfer results. For example, the

appearance of a person wearing pant does not transfer well to a person wearing a

short skirt as shown in the bottom image set of Fig. 4.9. Because in the dataset,

the objects wear skirts usually with bare legs. As a result, the model is biased and

has trouble changing the skin color to pants color when the appearance source is

wearing pants and the pose source is wearing short skirt.

4.3 Comparison of PD and HPD on DeepFashion
PD predicts object parts in a flat way that leads to unstructured representations,

however HPD detects object parts in a hierarchical way that enforces a tree struc-

ture to the part-based representations. Our experiments showed that HPD provides

more controlled and localized parts than PD which leads to better image recon-

struction capturing more details. HPD is trained with an additional loss term, hier-

archical loss computed by Eq. 3.13 that forces the children parts to be close to their

parents which prevents them from distributing all over the image. We find HPD

works better particularly for cases that the number of predicted landmarks is large

(more than 20). In these cases, a network have less control over the parts to assign

them to meaningful regions as there are so many of them. As a result, PD ends up

predicting parts, some of which are very alike and overlap with each other or some

others are assigned to the background regions instead of the object parts, not being

able to capture the details of the objects as expected. But for HPD the results are

better and the parts are finer, as it enforces more control over the parts, not letting

them spread over the image.

Fig. 4.10 visualizes the set of parts Φi(x) predicted by PD and HPD. For this ex-

periment, PD is trained to predict 30 Gaussian distributions in a flat way, however

HPD is trained with two levels of hierarchy, having 15 parent Gaussian distribu-

tions in the first level and 30 children Guassian distributions in the next and final

level. The parents and children distributions are trained simultaneously. All the
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Figure 4.10: Comparison of PD and HPD on the task of part detection.
The image visualises colored Gaussian distributions predicted by PD
model, and HPD. Comparing column 2 and 4 shows the hierarchical
extension leads to more detailed and meaningful parts. In addition,
HPD model works better especially on the challenging samples who
wear white clothes.
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images are from the test set of DeepFashion dataset, which are never seen in the

training process. Firstly, by comparing resulting parts of the first level and the sec-

ond level of hierarchy, we can see that some important object regions that could not

be captured in the first level of hierarchy like the feet or upper arms are captured

in the second level. Generally, there are finer and smaller Gaussian distributions in

the second level as each parent distribution is broken into two in the next level. In

addition, although there is no explicit term in the loss function to force the parts

not to be identical, almost all of the Gaussian distributions are separated and cap-

ture different object keypoints in the HPD model. Secondly, when we increase the

number of final parts from 15 in Fig. 4.2 to 30 in Fig. 4.10, we expect to have finer

parts capturing more details of the object. But, we can see in the second column

that PD does not necessarily leads to finer and more detailed parts. For example,

when the number of detected landmarks are set as 30 PD still assigns 3 Gaussian

distributions to the left leg similar to Fig. 4.2, which had 15 landmarks. But, for

this case of 30 landmarks HPD assigns 6 Gaussian distributions to the left leg, be-

ing able to capture more details of that. In addition, about 9 of the predicted parts

by PD are almost identical that makes just at most 21 of them visible in the blobby

image (second column of Fig. 4.10). Predicting identical parts can be considered

as a waste of model complexity and parameters, since repetitive parts do not add

more information for reconstructing the original image. However, for HPD, 29 out

of 30 resulting Gaussian distributions are well separated and clearly visible in the

blobby image (second column of Fig. 4.10). Generally, by comparing the second

column and the last column we can infer that the hierarchical extension improves

part localization and their controlability and it is less prone to predicting irrele-

vantly distributed parts.

Table 4.1 shows that hierarchical extension can also lead to better quantitative

results in terms of the pixel-wise reconstruction error. Note that, for all evalu-

ation experiments, both part appearance representations and pose representations

are extracted from the original image x not the spatially transformed image Ts(x) or

appearance transformed image Ta(x). Then part appearance and pose representa-

tions are combined and given to the decoder to reconstruct the original image. We

reported pixel-wise error of the PD model with 30 keypoints and the HPD model
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Method Encoder’s Parameters Pixel-wise Error

PD 39,641,182 0.2921
HPD 39,645,037 0.2202

Table 4.1: Reconstruction error of PD and HP model in image generation
task on the DeepFashion dataset. Numbers show HPD achieves better
results having only a few parameters more than PD.

with two levels of hierarchy, 15 keypoints in the first level and 30 in the second

level in Table 4.1. Pixel-wise error is computed by taking the average sum of the

squared difference of pixel values over the image, written as follows:

Pixel-wise Error =
1
N

N

∑
i=1

1
|H||W |

(
|H|

∑
u=1

|W |

∑
v=1

(xu,v− x̂u,v)
2

)
, (4.1)

where N is number of total images in the test set, |H| and |W | are the images height

and width respectively, x is the data sample and x̂ is the reconstructed image. It

can be concluded from the results that parts predicted by HPD improve image

reconstruction as they capture more details of the object. In addition, the number

of each model parameters is reported in Table 4.1 as a factor of model complexity.

We can infer from the results that HPD improves the reconstruction task without

adding a huge number of parameters and complexity to the model, as its encoder

has only 3,855 more than the flat PD model, and the decoder is same for both

models.

4.4 Landmark Detection on CelebA
In this set of experiments we evaluate our model quantitatively and qualitatively

through the task of unsupervised landmark detection, and compare our results with

Lorenz et al. [35] as the baseline. We also provide an ablation study to assess the

importance of each individual module of our model. For this set of experiments,

we used the CelebA[33] dataset. It includes 200K images of celebrity faces. Fol-

lowing [22, 35, 51], we divided the dataset into three folds: CelebA without the

MAFL subset, the MAFL training set, and the MAFL test set. Firstly, we train the
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Figure 4.11: Unsupervised landmark detection. Visualization of 10 unsu-
pervised landmarks predicted by the baseline, PD and HPD models
from left to right. Note that, the images of the first column are more
zoomed as we copied them directly from their paper, but all models
are trained with 128×128 images.
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variations of our model (PD and HPD) on the CelebA dataset excluding the MAFL

subset. Then we freeze the network weights to predict the unsupervised keypoints.

In the next step, as the mapping of our unsuperviesd keypoints to the ground-truth

ones is not available, we train a linear regressor to learn this mapping. One lin-

ear layer without a bias term is trained on the training set of the MAFL dataset to

map our unsupervised keypoints to the 5 ground-truth keypoints. Lastly, for quali-

tative and quantitative results, we test the model on the test set of the MAFL subset.

Fig. 4.11 visualizes our 10 unsupervised keypoints predicted by the two vari-

ations of our model, PD and HPD, and compares them with keypoints predicted

by the baseline[35]. We can see that our keypoints track the face shape properly,

however it is evident that the baseline does better on this as its keypoints are more

compact and focused to the face. The semantic meaning behind each keypoint is

not obvious, but we can see some of the keypoints are assigned to meaningful parts

like the nose, right eye, and top of the head. HPD parts are more localized and less

distributed over the image in comparison with PD which leads to tracking the face

more closely.

Fig. 4.12 shows landmark detection results predicted by the best version of

our model HPD for faces in different angles. We trained the model with a struc-

ture defined in Sect. 3.3 with two levels of hierarchy, predicting 5 parts in the first

layer and 10 in the second and last layer. The 10 cross markers shown in Fig. 4.12

represent the unsupervised detected the keypoints of the last layer of HPD. The re-

gressed keypoints are the output of the linear layer which maps the 10 unsupervised

keypoints to 5. We can see that predicted keypoints correspond to the ground-truth

ones specifically for the eyes and the mouth keypoints, even when the face is not

looking straight.

4.4.1 Ablation Study

To assess the impact of each module, we tested 4 different models each differing

in one module and compared the results with the baseline in terms of the landmark
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Figure 4.12: Landmark detection. We show 10 unsupervised keypoints
alongside with their mappings to 5 keypoints and the ground truth key-
points for sample faces from different angles. The cross markers show
unsupervised keypoints. The ground truth keypoints and regressed
keypoints are shown by hollow circles and solid circles respectively.
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Method Model’s Parameters Landmark Detection Error

Baseline[35] 74,171,543 7.54 (3.24)
Baseline + Swapping 4.4.1 74,171,543 7.12

Baseline + RGB colors 4.4.1 56,903,565 6.25
PD 4.4.1 56,903,565 5.87

HPD 4.4.1 56,904,850 5.79

Table 4.2: Ablation Study. We report landmark detection error of 5 versions
of our model each differing in one module on MAFL test set. Results
demonstrate that HPD model which combines all our proposed tech-
niques yields the best results. Note that, the reported error of 7.54 for
the baseline is achieved by our own implementation of that model, how-
ever it achieved error of 3.24 according to their paper.

detection error. Following [3, 35, 51], the landmark detection error is measured by

Eq. 4.2 as the average landmark distance to ground-truth, normalized as percent-

ages with respect to inter-ocular distance.

Landmark Detection Error =
1
N

N

∑
i=1

1
5

5

∑
j=1

‖xi j− x̂i j‖2

inter-ocular distance(xi)
, (4.2)

where inter-ocular distance is the distance between the two eyes, which is measured

as the euclidean distance of ground truth keypoints of the left and right eye, and

x̂i j depicts the jth predicted keypoints of the ith sample. We report the number of

model parameters and the landmark detection error in Table 4.2.

The four variations of models in Table 4.2 are described in below:

• Baseline + Swapping : In this model, we used [35] as the core but instead of

explicitly using the equivariance loss in the training, we used the swapping

technique. In the swapping technique, we swap the original image with the

spatially transformed image for 50 percent of the times. As a result, half

of the times the spatially transformed image is reconstructed instead of the

original image which makes the pose encoder predict part activation maps

that consistently track the object part they represent, even when the object is

deformed. This simple technique frees us from further tuning the loss term
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and improves the results.

• Baseline + RGB colors: We wanted to assess the impact of using a simpli-

fied appearance encoder which instead of predicting a n dimensional appear-

ance vector for each part, it assigns a 3-channel RGB color to them. As a

result, in this model we replaced the appearance encoder of Lorenz et al [35]

with our simplified appearance encoder. This change freed up 17,267,978

parameters which reduces the memory usage without harming the results.

• PD This model is described in Sect. 3.2. In this version, we omitted the

appearance encoder and the equivariance loss of the baseline; instead we

used the RGB colors and the swapping technique. The combination of these

changes leads to better landmark detection results.

• HPD This model is described in Sect. 3.3. In this version, we kept all our

changes to the baseline plus predicting the parts in a hierarchical manner. For

the HPD model, we can define an arbitrary number of hierarchies but in this

particular experiments, we used two levels of hierarchy with 5 keypoints in

the first level and 10 in the last. It is evident from our qualitative and quanti-

tative results that the hierarchical extension improves the results qualitatively

and quantitatively in terms of the reconstruction error and the landmark de-

tection error. Furthermore, the hierarchical extension only adds about 1,285

parameters which is negligible in comparison with over 56 million of total

parameters.

Among all the tested variations, the HPD model yields the minimum error of 5.79

with a small gap with PD. Note that, as the original code for the baseline model [35]

was in Tensorflow and the evaluation code was not available, we reimplemented

the model on our own. We used our own setup for training and testing including

the transformations which might be the reason for the gap between their reported

number in the paper [35] (3.24) and ours (7.54).

4.5 Implementations Details
For implementation, we used the Pytorch framework. We found all the model vari-

ations are sensitive to the batch size. For batch sizes less than 8, the Gaussian
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distributions were not well localized to body regions, instead there were horizon-

tally distributed over the object. But with batch sizes equal greater than 16 they

started to capture meaningful parts. For all the models we used 32 as the batch

size with the accumulating gradient technique and 0.001 as the learning rate with

Adam optimizer. For all experiments with the hierarchical extension, the weight of

the hierarchical loss is set as 0.1. Our pose encoder E has the same architecture of

Chen et al. [7], and decoder D has U-net [44] architecture with four downsampling

Convolution layers, four upsampling Convolution layers, and four ResNet connec-

tions. In the learning phase, each pass over the whole training set took about half

an hour for the DeepFashion dataset on a single core NVIDIA Titan Xp GPU.
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Chapter 5

Conclusion

In this thesis, we present HPD, an auto-encoder framework for detecting parts that

form an object and disentangling their pose and appearance in an unsupervised

manner. Our model can produce high quality disentangled representations which

can be used in various tasks such as unsupervised landmark detection, novel image

synthesis, and local or global pose and appearance transfer. We suggest a swapping

technique that enables the training using only reconstruction loss as the objective

function instead of its combination with the equivariance loss used in similar meth-

ods [35, 51, 59]. This simple technique frees the model from further tuning of the

training objective and leads to robust training. In addition, we propose a much sim-

pler encoder that, instead of predicting n dimensional appearance representations

like [35], predicts a single RGB color for each part as the appearance represen-

tation. This substitution saves millions of model parameters, making it a more

lightweight network in comparison with Lorenz et al., yet achieving comparable

results. Furthermore, we propose a new method for detecting object parts in a hi-

erarchical manner which enforces a binary-tree structure to the detected parts. We

show in our experiments that the hierarchical extension can lead to more meaning-

ful keypoints and better quantitative results in terms of landmark detection error

and image reconstruction error. Although we could not beat the quantitavie results

reported by Loren et al. [35] paper, we believe that our simplified architecture and

proposed ideas have potential in a future work.
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5.1 Limitations and Future Work
The proposed method in this thesis does not come without limitations. At last, we

list some of the model’s limitations and our proposed solutions that can be tested

to improve the results in the future.

• The visual quality of synthesised images by a neural network is not always

ideal, and our method is not an exception. To improve the quality of images

we can train the model with an additional adversarial training objective as

proposed by Isola et al [20]. For this purpose a discriminator need to be

added on top of the model to classify the generated images by the auto-

encoder as real or fake.

• For the set of experiments on CelebA, we trained models for 30 epochs and

reported the results in Table 4.2, which outperforms the baseline. But as

the baseline model has more parameters in comparison with ours, it might

outperform us after longer training. To keep the comparison fair, the model

should be trained longer.

• We showed our model performs well on the DeepFashion and CelebA datasets,

but its performance on other datasets is an open question. It would be inter-

esting to assess the performance of the model for objects other than humans

like cats [58] and birds [53] in the future.

• We discussed that in our proposed HPD model children parts locations are

dependent on their parents, as we force µ of the children Gaussian distri-

butions to be close to the µ of their parents Gaussian distributions. But

currently there is no constraint on the ΣΣΣ. In the future, the hierarchical loss

can be revised in a way that the standard deviation of the children Gaussian

distributions be dependent to their parents as well as the mean.

• We believe the new idea of enforcing a hierarchical structure to the learned

parts has a great potential for future work. Although the proposed hierar-

chical method is defined generally for any arbitrarily levels of hierarchy, we

just used up to 3 levels of hierarchy for our experiments. The impact of

hierarchy levels on the quality of keypoints and image reconstruction is an
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open area. In addition, in our experiments the number of predicted keypoints

were limited to under 30, however we believe the strength of the hierarchical

extension emerges on cases that need to predict a large number of keypoints.

Further experiments can be done in the future to assess this assumption.
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