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Introduction
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Motivation

e Learning Image Representations
o acrucial task in Computer Vision

Image Encoder
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e Problem: Entangled Representations lack interpretability

e Solution: Disentangled Representations
o  Factorized
o  Eachfactor represents an independent characteristic of objects.
o  Moreinterpretable
== o  Enable Novel Image Synthesis

Image Encoding
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Our Project

e Our representations encode:
o  Object keypoints (parts)
o Disentangled appearance and shape of parts
o Parts structure in the shape of a binary-tree

e Our provided latent space can be used for:
o  Landmark detection
o  Selective image modification
o Local appearance or pose transfer
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Related Work
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Supervised Approaches

e Need annotations in terms of:
o Pose annotations
o  Keypoints
o  Segmentation of shape into parts
o Parts labels
o Hierarchy of parts

o  Tons of annotations

o  Hardto get annotations

o  Not applicable for domains with no labels
e Our method:

o  Unsupervised

o  Needs no annotation
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Unsupervised Approaches

e Condition generative models on pose or keypoints information
o Extracted from a pre-trained detector

e Cons:
o  Only applicable when a pose detector exists
o  Not generalizable to all objects

e Ourmethod:
o  No prior knowledge about object shape
o  Applicable for any arbitrary domain.

Source Image Target Pose Synthesized Image

Balakrishnan et al.
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Approaches Trained on Multiple Images

e Some methods need:
o Multiple frames from videos 8
o  Pairsofimages .
m  Varyinginone factor

T
m  Sameintherest Jr p(m|z3)
e Cons: —— D |—ux9
o Such datasets are hard to obtain
e Our method:
. . . xl - Ea > D_
o  Trained onsingle images 5

o  Applicable for videos i I |

[ 1 Pose Encoder
| Appearance Encoder
[ 1| Generator
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GAN-based methods

Train with adversarial loss

Cons:
@ Hard to optimize
o  Can’'t encode existing images
Our method:
o  Auto-encoder
o  Robust training with reconstruction loss

=== Stitching process
[ Generative modules
() Discriminative modules
(®) Elementwise multiplication
(¥) Elementwise addition

b - Background code

p - Parent code

¢ - Child code

Background stage
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Method
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Intuition

e Letusassume we have a triplet of images (x, x1, x2)
o  xandx1share the same appearance

o x and x2 share the same pose x2
e Anlmage can be generated by Pos:.
o Its pose and appearance: eT?,O i
—

x = D(@7PP (x), &P (x)). 3 Hﬂgm} —

representation

e The above formula can be re-written: Appearance
encoder

x = D(®P(x1), D7 (x2)). |
: Appearance

representation
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Our Method

e Wecreate triplets from single images

o  x1— Spatially transformed image XZ
Pose
o %2 — Appearance transformed image encoder
-' — (I
Pose Generator
representation ’
11 Appearance 4’{
encoder
\! __— Appearance X
representation
!
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Transformations

o Shift in HSV space
o Mix with a base color in RGB space

o 7 pre-defined TPS
o Linearly combine them
o Rotate up to 60 degrees

December 2020
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Problem Formulation

e Factorize image into its forming parts

D(x) = (P1(x), P2(x),...,Pr(x))

e Partrepresentation should be a combination of its appearance and pose
- app pose
D;(x) = (D" (x),®;  (x))
e Pose and Appearance should be invariant to changes in appearance and pose
’ . app d pose
D;(x) = ((I)i (Ts(x)), (I)l. (Ta(x)))
e Reconstructionis an assembly of parts shape and appearance

D(x) = (PP (T5(x)), @7 (Ta(x)))]

=1
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PD

(Part-based Disentanglement)
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PD

Appearance
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Pose Stream

e Goal: Predict object parts in terms of 2D Gaussian distributions.

PP (x) = [@F (x)];

l
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Appearance Stream

e Goal: Predict appearance vectors for each part

PP (x) = [P ()],
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Reconstruction Stream

Goal: Reconstruct image from the set of parts and their appearances

Part Shapes

255 230 204

Part Appearances
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Training Objective

e lrec — ||x_xA||2+lperc(xa£)

Original image I, loss 1; + perceptual loss Original image 15 loss 1, + perceptual loss
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Equivariance Constraint

= pose
Ta (X) (Pi (X)
B Pose Encoder
[T 8 E
Appearance \ Equivariance
= Transformation | A Bl
[ & / T, ) Loss

e
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Swapping Technique

e Half of the times, we randomly swap role of the original image and the spatially transformed image.

‘ ‘ Pose
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Pose Invariance and Equivariance

Given image x Activation map of x Ts(x) Activation map of T(x) Ta(x) Activation map of T,(x)
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HPD

(Hierarchical Part-based Disentanglement)
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Pose Encoder

Part Activation Maps
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Pose and Appearance Stream

e Posestream
o  Goal: Learn structured parts
e Appearance stream
o  Goal: Learn the color of each part

Hierarchical Loss = || Centerparents — Centercnidren ||,

Part Activation Maps Blobby Images

Pose Encoder

E
Estimate Gaussians
—> 15 parent parts and
Muitiply by Part
Appearances

30 children parts

Levell: | Head | Arm Leg
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Reconstruction Stream

e Werandomly pick one set of parts either the parents or the children for reconstruction.

Blobby Images
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Transformations

e Appearance Transformations
o  Shiftin HSV space
o  Mixwith abase color in RGB space

e Spatial Transformations
o 7 pre-defined TPS
o  Linearly combine them
o Rotate upto 60 degrees
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Results
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Part Detection

Detected keypoints

Part activation maps

Gaussian distributions
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Global Pose and Appearance Transfer
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Local Appearance Transfer
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Local Pose Transfer
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PD vs HPD - Qualitative

Gaussian distributions Gaussian distributions Gaussian distributions Gaussian distributions

Image PD 2nd level of HPD

2]
X

Image

PD 2nd level of HPD

o

3

5
i
y
v

35

December 2020



PD vs HPD - Quantitative

e HPD predicts more meaningful and detailed parts that lead to better reconstruction
O In terms of pixel-wise error

O  Onthe DeepFashion dataset

Method Pixel-wise Error

PD 0.2921
HPD 0.2202
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Unsupervised Landmark Detection

Baseline Baseline

Baseline (Lorenz et al.)
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Regressed Keypoints

Unsupervised Keypoints

Regressed Keypoints Unsupervised Keypoints
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Ablation Study

e We compared 5 variations of the model each differing in one module.
o Interms of Landmark Detection Error
o OnCelebA dataset

e HPD yielded the best results

Method Model’s Parameters Landmark Detection Error
Baseline (Lorenz et al.) 74,171,543 7.54 (3.24)
Baseline + Swapping 74,171,543 12
Baseline + RGB colors 56,903,565 6.25
PD 56,903,565 5.87
HPD 56,904,850 5.79
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Conclusion
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Summary

e Anapproach for detecting object parts and their disentangled appearance and pose in a

hierarchical manner.
o  Unsupervised
o  Needs no prior knowledge about the object shape
o  Trained onsingle images
e Contributions:
o  Swapping Technique — Frees usfrom further tuning training objective
o  Simple appearance encoding method — Saves millions of parameters
o  Hierarchical extension — Detects more meaningful parts
e Evaluation
o Part detection
o  Pose and appearance transfer
@ Landmark detection
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Limitations and Future Work

e Enhance visual quality of images
o  Adding adversarial loss
e Test other datasets

o Cats
o Birds
o Videos

e Do more experiments on the hierarchy
o  Assessthe impact of depth
o Increase number of landmarks
o Enforce an unbalanced tree structure
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Thanks for your Attention!
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