Hierarchical Part-based Disentanglement of Pose and Appearance

M.Sc. Thesis presentation by Farnoosh Javadi

Supervisors: Jim Little, Helge Rhodin

THE UNIVERSITY OF BRITISH COLUMBIA

Overview

Introduction

Motivation

- Learning Image Representations
 - a crucial task in Computer Vision

Image Encoder

- **Problem:** Entangled Representations lack interpretability
- **Solution:** Disentangled Representations
 - **Factorized** 0
 - Each factor represents an independent characteristic of objects.
 - More interpretable 0
 - **Enable Novel Image Synthesis** 0

Our Project

- Our representations encode:
 - Object keypoints (parts)
 - Disentangled appearance and shape of parts
 - o Parts structure in the shape of a binary-tree

- Our provided latent space can be used for:
 - Landmark detection
 - Selective image modification
 - Local appearance or pose transfer

Related Work

Supervised Approaches

- Need annotations in terms of:
 - Pose annotations
 - Keypoints
 - Segmentation of shape into parts
 - Parts labels
 - Hierarchy of parts
- Cons:
 - Tons of annotations
 - Hard to get annotations
 - Not applicable for domains with no labels
- Our method:
 - Unsupervised
 - Needs no annotation

Paschalidou et al.

Li et al.

Unsupervised Approaches

- Condition generative models on pose or keypoints information
 - Extracted from a pre-trained detector
- Cons:
 - Only applicable when a pose detector exists
 - Not generalizable to all objects
- Our method:
 - No prior knowledge about object shape
 - Applicable for any arbitrary domain.

Balakrishnan et al.

December 2020

Target Pose

Approaches Trained on Multiple Images

- Some methods need:
 - Multiple frames from videos
 - Pairs of images
 - Varying in one factor
 - Same in the rest
- Cons:
 - Such datasets are hard to obtain
- Our method:
 - Trained on single images
 - Applicable for videos

Esser et al.

GAN-based methods

- Train with adversarial loss
- Cons:
 - Hard to optimize
 - Can't encode existing images
- Our method:
 - Auto-encoder
 - Robust training with reconstruction loss

Singh et al.

10

Method

Intuition

- Let us assume we have a triplet of images (x, x1, x2)
 - x and x1 share the same appearance
 - x and x2 share the same pose
 - An Image can be generated by
 - Its pose and appearance:

$$x = D(\Phi^{app}(x), \Phi^{pose}(x)).$$

The above formula can be re-written:

$$x = D(\Phi^{app}(x_1), \Phi^{pose}(x_2)).$$

Our Method

- We **create** triplets from single images
 - \circ x1 \rightarrow Spatially transformed image
 - $\circ \hspace{0.5cm} x2 \rightarrow Appearance \, transformed \, image$

Transformations

December 2020 14

Problem Formulation

• Factorize image into its forming parts

$$\Phi(x) = (\Phi_1(x), \Phi_2(x), \dots, \Phi_k(x))$$

Part representation should be a combination of its appearance and pose

$$\Phi_i(x) = (\Phi_i^{app}(x), \Phi_i^{pose}(x))$$

Pose and Appearance should be invariant to changes in appearance and pose

$$\Phi_i(x) = (\Phi_i^{app}(T_s(x)), \Phi_i^{pose}(T_a(x)))$$

Reconstruction is an assembly of parts shape and appearance

$$\Phi(x) = [(\Phi_i^{app}(T_s(x)), \Phi_i^{pose}(T_a(x)))]_{i=1}^k$$

15

PD (Part-based Disentanglement)

PD

December 2020 17

Pose Stream

• Goal: Predict object parts in terms of 2D Gaussian distributions.

$$\Phi^{pose}(x) = [\Phi_i^{pose}(x)]_i$$

Appearance Stream

• Goal: Predict appearance vectors for each part

$$\Phi^{app}(x) = [\Phi_i^{app}(x)]_{i=1}^k$$

December 2020 19

Reconstruction Stream

• Goal: Reconstruct image from the set of parts and their appearances.

Part Shapes

Part Appearances

Training Objective

• $l_{\text{rec}} = ||x - \hat{x}||_2 + l_{\text{perc}}(x, \hat{x})$

Original image	l ₂ loss	l ₂ + perceptual loss	Original image	l ₂ loss	l ₂ + perceptual loss
1	2	1	A	(a)	(3)
	W	W		The state of the s	***
	11	- 11	W	W	W
2 &	14	2	46	26	36

Equivariance Constraint

Swapping Technique

• Half of the times, we randomly swap role of the original image and the spatially transformed image.

Pose Invariance and Equivariance

December 2020 24

HPD (Hierarchical Part-based Disentanglement)

HPD

Pose and Appearance Stream

- Pose stream
 - Goal: Learn structured parts
- Appearance stream
 - Goal: Learn the color of each part

Reconstruction Stream

• We randomly pick one set of parts either the parents or the children for reconstruction.

Transformations

- Appearance Transformations
 - Shift in HSV space
 - Mix with a base color in RGB space
- Spatial Transformations
 - 7 pre-defined TPS
 - Linearly combine them
 - Rotate up to 60 degrees

Results

Part Detection

Global Pose and Appearance Transfer

Local Appearance Transfer

33

Local Pose Transfer

PD vs HPD - Qualitative

PD vs HPD - Quantitative

- HPD predicts more meaningful and detailed parts that lead to better reconstruction
 - In terms of pixel-wise error
 - On the DeepFashion dataset

Method	Pixel-wise Error		
PD	0.2921		
HPD	0.2202		

December 2020 36

Unsupervised Landmark Detection

Baseline (Lorenz et al.)

December 2020 37

Regressed Keypoints

Unsupervised Keypoints

Regressed Keypoints

Unsupervised Keypoints

Regressed Keypoints

38

Ablation Study

- We compared 5 variations of the model each differing in one module.
 - o In terms of Landmark Detection Error
 - On CelebA dataset
- HPD yielded the best results

Method	Model's Parameters	Landmark Detection Error
Baseline (Lorenz et al.)	74,171,543	7.54 (3.24)
Baseline + Swapping	74,171,543	7.12
Baseline + RGB colors	56,903,565	6.25
PD	56,903,565	5.87
HPD	56,904,850	5.79

Conclusion

Summary

- An approach for detecting object parts and their disentangled appearance and pose in a hierarchical manner.
 - Unsupervised
 - Needs no prior knowledge about the object shape
 - Trained on single images
- Contributions:
 - Swapping Technique → Frees us from further tuning training objective
 - \circ Simple appearance encoding method \rightarrow Saves millions of parameters
 - Hierarchical extension → Detects more meaningful parts
- Evaluation
 - Part detection
 - Pose and appearance transfer
 - Landmark detection

Limitations and Future Work

- Enhance visual quality of images
 - Adding adversarial loss
- Test other datasets
 - Cats
 - Birds
 - Videos
- Do more experiments on the hierarchy
 - Assess the impact of depth
 - Increase number of landmarks
 - Enforce an unbalanced tree structure

December 2020 42

Thanks for your Attention!

???????

December 2020 43