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Introduction
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Motivation
● Learning Image Representations

○ a crucial task in Computer Vision

● Problem: Entangled Representations lack interpretability
● Solution: Disentangled Representations 

○ Factorized 
○ Each factor represents an independent characteristic of objects.
○ More interpretable
○ Enable Novel Image Synthesis
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Our Project
● Our representations encode:

○ Object keypoints (parts)
○ Disentangled appearance and shape of parts
○ Parts structure in the shape of a binary-tree

● Our provided latent space can be used for:
○ Landmark detection
○ Selective image modification
○ Local appearance or pose transfer
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Related Work
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Supervised Approaches
● Need annotations in terms of:

○ Pose annotations
○ Keypoints
○ Segmentation of shape into parts
○ Parts labels
○ Hierarchy of parts

● Cons:
○ Tons of annotations
○ Hard to get annotations
○ Not applicable for domains with no labels 

● Our method:
○ Unsupervised 
○ Needs no annotation
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Unsupervised Approaches
● Condition generative models on pose or keypoints  information

○ Extracted from a pre-trained detector

● Cons:
○ Only applicable when a pose detector exists
○ Not generalizable to all objects

● Our method :
○ No prior knowledge about object shape
○ Applicable for any arbitrary domain.
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Balakrishnan et al.
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Approaches Trained on Multiple Images
● Some  methods need:

○ Multiple frames from videos
○ Pairs of images 

■ Varying in one factor
■ Same in the rest

● Cons:
○  Such datasets are hard to obtain

● Our method:
○ Trained on single images
○ Applicable for videos
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Esser et al.
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GAN-based methods
● Train with adversarial loss 

● Cons:
○ Hard to optimize
○ Can’t encode existing images

● Our method:
○ Auto-encoder 
○ Robust training with reconstruction loss
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Singh et al.
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Method
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Intuition
● Let us assume we have a triplet of images (x, x1, x2)

○ x and x1 share the same appearance
○ x and x2 share the same pose

● An Image can be generated by
○ Its pose and appearance :

● The above formula can be re-written :
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Our Method
● We create triplets from single images

○ x1 →  Spatially  transformed image

○ x2 →  Appearance transformed image 
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Transformations
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Problem Formulation
● Factorize image into its forming parts

● Part representation should be a combination of its appearance and pose

● Pose and Appearance should be invariant to changes in appearance and pose

● Reconstruction is an assembly of parts shape and appearance
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PD
(Part-based Disentanglement)
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PD
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Pose Stream
● Goal: Predict object parts in terms of 2D Gaussian distributions. 
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Appearance Stream
● Goal: Predict appearance vectors for each part
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Reconstruction Stream
● Goal: Reconstruct image from the set of parts and their appearances.
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Training Objective
●
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Equivariance Constraint
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Swapping Technique
● Half of the times, we randomly swap role of the original image and the spatially transformed image.
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Half of the times Half of the times
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Pose Invariance and Equivariance
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HPD
(Hierarchical Part-based Disentanglement)
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HPD
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Pose and Appearance Stream
● Pose stream

○ Goal: Learn structured parts

● Appearance stream
○ Goal: Learn the color of each part
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Reconstruction Stream
● We randomly pick one set of parts either the parents or the children for reconstruction.
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Transformations
● Appearance Transformations

○ Shift in HSV space

○ Mix with a base color in RGB space

● Spatial Transformations

○ 7 pre-defined TPS  

○ Linearly combine them

○ Rotate up to 60 degrees 
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Results
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Part Detection
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Global Pose and Appearance Transfer
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Local Appearance Transfer
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Local Pose Transfer
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PD vs HPD - Qualitative
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PD vs HPD - Quantitative
● HPD predicts more meaningful and detailed parts that lead to better reconstruction

○ In terms of pixel-wise error

○ On the DeepFashion dataset
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Unsupervised Landmark Detection

37

Baseline (Lorenz et al.)
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Regressed Keypoints
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Ablation Study
● We compared 5 variations of the model each differing in one module. 

○ In terms of Landmark Detection Error

○ On CelebA dataset

● HPD yielded the best results

○
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Conclusion
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Summary
● An approach for detecting object parts and their disentangled appearance and pose in a 

hierarchical manner.
○ Unsupervised 
○ Needs no prior knowledge about the object shape
○ Trained on single images

● Contributions:
○ Swapping Technique →   Frees us from further tuning training objective
○ Simple appearance encoding method →   Saves millions of parameters
○ Hierarchical extension   →   Detects  more meaningful parts

● Evaluation
○ Part detection
○ Pose and appearance transfer
○ Landmark detection
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Limitations and Future Work
● Enhance visual quality of images

○ Adding adversarial loss

● Test other datasets
○ Cats 
○ Birds
○ Videos

● Do more experiments on the hierarchy
○ Assess the impact of depth
○ Increase number of landmarks
○ Enforce an unbalanced tree structure
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Thanks for your Attention!
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