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Abstract

In our project, given a source video of a person danc-
ing, we want to transfer the dance motion to an amateur
target performing some standard moves. There are lots of
application for this work in advertisement or film industry.
We approach this problem as video to video translation us-
ing pose as an intermediate representation. To transfer the
motion, we extract poses from the source subject and ap-
ply the learned pose to appearance mapping to generate
the target subject. For the background, as opposed to the
baseline model [6] we use the target video, due to hav-
ing more realistic features. The output gif of our results
can be seen in https://drive.google.com/open?
id=1OaKLNmlrS5zXpGSkXlHl00YxOuOPHe5_.

1. Introduction
Consider the two videos of Figure 1. We want to give the

top row as the input to our model and transfer its motion to
an amateur subject not performing dance moves, as shown
in the second and third row [6]. The baseline model [6] uses
target video’s background (as you can see in the third row),
however we find out that generally source video’s back-
ground is more realistic (second row). The interesting point
is that the target subject knows nothing about dancing and
has a different gender, body shape,clothing and height from
the target. But the motion is well correspond with him. To
transfer motion between two video subjects in a frame-by-
frame manner, we must learn a mapping between images
of the two individuals. Our goal is, therefore, to discover an
image-to-image translation [14] between the source and tar-
get subjects. We don’t have correspondences between the
source and target to supervisedly train a network. Hence,
we use keypoint-based pose as an intermediate represen-
tation because it preserves the motion over time, and is a
good representative for that. We therefore use pose stick
figures obtained from Openpose [4], and use them to learn
an image to image translation model between the source
and target subject. To transfer motion from source to tar-
get, we input the poses the source into the trained model

to obtain images of the target subject in the same pose as
the source. The baseline paper [6] gets all the appearance
both for the background and foreground, from the target
video, as you can see in 1. But we notice that targets’ back-
grounds are usually very simple not having many features,
however source’s background are more realistic and hav-
ing some features like shadows, and lights that correspond
with the dance move. Therefore we decided to divide the
appearance into foreground and background and have dif-
ferent sources for each of them. In our project, we get the
background from the source video and the foreground’s ap-
pearance comes from the target video.

2. Related Work

2.1. Pose Detection

Modern pose detection systems including OpenPose [4]
and DensePose [10] allow for reliable and fast pose extrac-
tion in a variety of scenarios. In our project, we use Open-
pose which is a pre-trained pose detector and can accurately
estimate all of the subject’s multiple joint coordinators. The
model consists of a convolution neural network with a spe-
cific series of matrix operations which is optimized for pose
estimation.

2.2. Motion Transfer

Motion Transfer is a hot and interesting topic in com-
puter vision and computer graphics and there has been lots
of research in this area. Early methods focused on creat-
ing new content by manipulating existing video. For exam-
ple, Video Rewrite [3] creates videos of a subject saying a
phrase they did not originally say by finding frames where
the mouth position matches the desired speech. [8] uses
optical flow as a descriptor to match different subjects per-
forming similar actions allowing “Do as I do” and “Do as I
say” retargeting.
Some approaches rely on calibrated multi-camera setups to
scan a target actor and manipulate their motions in a new
video through a fitted 3D model of the target. To obtain
3D information, [7] propose a multi-view system to cali-
brate a personalized kinematic model, obtain 3D joint esti-

1

https://drive.google.com/open?id=1OaKLNmlrS5zXpGSkXlHl00YxOuOPHe5_
https://drive.google.com/open?id=1OaKLNmlrS5zXpGSkXlHl00YxOuOPHe5_


Figure 1. Given a video of a dancer (top), we want to transfer the motion to an amateur subject. The second row is the results of our model
using source video’s background. The third row is the results using target video’s background as proposed in [6]

mations, and render images of a human subject performing
new motions. [20] uses multi-view captures of a target sub-
ject performing simple motions to create a database of im-
ages and transfer motion through a fitted 3D skeleton and
corresponding mesh for the target. [5] uses 4D video tex-
tures to store a texture representation of a target person and
use their temporally coherent mesh and data representation
to generate video of the target subject performing new mo-
tions. In contrast, in our project we explore motion transfer
between 2D subjects and avoid data calibration and map-
ping to the 3D space.
Many approaches rely on deep learning for the task. In [15],
given synthetic renderings, a face model, and a gaze map as
input, they transfer head position and facial expressions be-
tween human subjects. Our project is similar to them except
we retarget full body motion, and the inputs to our model is
2D pose as opposed to 3D representations. Similarly, [16]
applies neural re-rendering to enhance rendering of human
motion capture for VR/AR purposes. The primary focus of
this work is to render realistic humans in real time and uses
a deep network to synthesize their final result, but does not
address motion transfer between subjects.
Some Recent methods focus on disentangling motion from
appearance and synthesizing videos with novel motion.
MoCoGAN [19] employs unsupervised adversarial training
to learn this separation and generates videos of subjects per-
forming novel motions or facial expressions. This theme is
continued in Dynamics Transfer GAN [1] which transfers
facial expressions from a source subject in a video onto a
target person given in a static image. In this project, we
also apply our representation of motion to different target
subjects to generate new motions.
Many approaches have shown success in generating de-
tailed single images of human subjects in new poses, how-
ever they are not designed specifically for motion transfer.

2.3. Image to Image Translation

Image to image translation involves the controlled mod-
ification of an image and synthesize an image that does not
exist. CycleGAN [21] is a technique for training unsuper-
vised image translation models via the generative adver-
sarial network (GAN) architecture using unpaired collec-
tions of images from two different domains. Pix2PixHD
[13] translated semantic label maps into photo-realistic
images for synthesizing portraits from face label maps.
In our project we used the NVIDIA implementation of
pix2pixHD.

2.4. Background Detection

Background subtraction is a popular method for isolat-
ing the moving parts of a scene by segmenting it into back-
ground and foreground. The shape of the human silhouette
plays a very important role in recognizing human actions,
and it can be extracted from background subtracted blobs.
Several methods based on global, boundary, and skeletal
descriptors have been proposed to quantify the shape of
the silhouette. Global methods consider the entire shape
region to compute the shape descriptor. Boundary meth-
ods, on the other hand, consider only the shape contour as
the defining characteristic of the shape. Such methods in-
clude chain codes [9] and landmark-based shape descriptors
[12]. Skeletal methods represent a complex shape as a set of
1D skeletal curves, for example, the medial axis transform
[2]. These methods have found applications in shape-based
modeling of the human silhouette.
In our project, for detecting the background we use the pro-
posed method of [17]. After computing the background we
get the segmentation mask for each frame by the traditional
background subtraction method.

3. Method
Given a video of a source person and another of a target

person, our goal is to generate a new video of the target



Figure 2. The examples of pose figures and the corresponding im-
ages

performing the same dance motions of the source person
with the source background. In other words, our goal is to
switch the source subject with the target one in the source
dancing video. We summarize our steps for accomplishing
this task in the following sections.

3.1. Pose Encoding

The pre-trained weight files of OpenPose are used to en-
code the pose of humans. Using OpenPose able us to take
the pose coordinates and draw a representation of result-
ing pose stick figures. The key points and the lines be-
tween connected joints are plotted. These pose figures are
extracted for every image frames of the video resulting to
create a rich dataset of dancing poses. Figure 2 shows some
examples of pose figures with the corresponding image fig-
ures.

3.2. Pose to Video Translation

In order to transfer the motion from the source video to
the target subject, we should learn the mapping between the
images of the two individuals in the frame-by-frame man-
ner. Since we do not have the corresponding subjects per-
forming the same motion, the labeled data cannot be used
and it should be done in the completely unsupervised way.
The adversarial training can be used to learn the mapping
from the pose stick figures to images of the target person.
However, the Conditional GAN (CGAN) structure from
pix2pix is not suitable for this task because it cannot cap-
ture the fine details of the human motions and the temporal
coherency is violated.

3.2.1 The baseline Training Stage

The pose stick figures are used as an intermediate represen-
tation for this transfer. Therefore, the target’s image and
corresponding pose figures are fed as the input to GAN to
generate a new video conditioned on the source pose with
the target appearance.

The GAN is consisting of two components including the
generator and discriminator. The U-Net architecture is used
for the generator which directly connected the encoder lay-
ers to decoder layers using skip connections. Instead of
generating an individual frame, the generator is modified
to generate two consecutive frames. The first output is con-
ditioned on its corresponding pose stick figure and the gen-
erated frame at the previous time step. The second output
is conditioned on its corresponding pose stick figures and
the first output. The discriminator uses pose images and
compares them with the input images regarding both tempo-
ral and realism’s coherency to distinguish fake and real se-
quences. The top row of the figure 3 shows these steps. As
illustrated in this figure, the labeled images are denoted by
yt and yt+1, and the related poses by xt and xt+1. Gt and
Gt+1 indicate the generated images. In order to consider the
temporal coherency, smooth loss (Lsmooth (G,D)) is de-
fined in equation 1 and the GAN objective is updated base
on that in the equation 2.

Lsmooth(G,D) = E(x,y)[logD(xt, xt+1, yt, yt+1)]

+Ex[log(1−D(xt, xt+1, G(xt), G(xt+1))])
(1)

min
G

((max
Di

∑
ki

Lsmooth(G,Dk)) + λFM

∑
ki

LFM (G,Dk)

+λP (LP (G(xt−1), yt−1) + LP (G(xt), yt)))
(2)

A multi-scale discriminator is used D = (D1, D2, D3) so
i = 1, 2, 3. The LFM (G,D) is the discriminator feature-
matching loss presented in pix2pixHD [13]. This loss is
defined to minimize the statistical difference between the
features of the real images and the generated images.
The LP (G(x), y) is the perceptual reconstruction loss. It
uses the pre-trained VGGNet [18] features for extracting the
features of generated images and compare them with origi-
nal feature images. This loss is computed at different layers
of the network to improve the generation capability. The λ
terms used control the importance of the loss terms.
The baseline paper proposed a separate pipeline to generate
more realistic face synthesis called Face GAN. The full im-
age GAN explained is optimized separately from the face
GAN. We did not implement this step in our project and
this is why the faces in our output synthesized results do
not look very realistic.

3.2.2 The Baseline Testing Stage

Once both the generator and discriminator are trained, the
pose key points of the source person are transformed in a
way that they appear in accordance with the target person’s
body shape and location. This step called global pose nor-
malization with the goal to adjust the differences between
source and target subjects. This step is illustrated in figure’s



Figure 3. The training and testing stages of the baseline Model

3 bottom row. These adjustments try to match the two sub-
jects in both scale and location. It usually works when two
subjects have different limb proportions or stand closer or
farther to the camera than one another. After these trans-
formations applied on of all pose key points of all given
frame of the source subject, the results are fed as an input to
the generator and the synthesized target images are gener-
ated performing the same motion of the source subject. It is
important to note that our group did not implement the nor-
malization step in our project and directly pass the source
poses as the input to the generator. Figure 4 shows some
of our synthesized outputs with the corresponding source
poses.

3.3. Background Detection

We notice that in our dataset, the source video’s back-
ground is more realistic in comparison with the target video
in which an amateur person is doing some standard moves.
That motivated us to get the background from the source
video as opposed to the baseline model. For this end, at
first we need to detect the background of source video. For
background detection, we use the proposed method in [17],
in which they estimate the background by taking the me-
dian pixel value across all frames. We also tested comput-
ing the background by taking mean of pixel values across
all frames, but median worked better and could eliminate
noises better. The method is very simple however it assumes
the background is static which is a strong constraint.

3.4. Segmentation Mask Detection

Another component that we need to blend the back-
ground with foreground is the segmentation mask which
we need to have it for every frame of our final video. To

Figure 4. Some examples of synthesized images, first column is
the source image and second one is the target image.

compute the segmentation mask S for each frame, at first,
we compute the background of the target video as the ex-
plained way in previous section. Then we subtract every
synthesized frame at time stem t from background and map
the result to 0-1 range to have the segmentation masks St

. Finally, we blend the source video’s background Bs and
generated frames’ Î foreground by the formula 3 to synthe-
size the final video frames Ft.

Ft = SÎt + (1− S)Bs (3)

4. Experiments
We used the youtube-dl python package to download and

cut the first 20 seconds of the single-dancer videos as our
source and target videos, and then performed OpenPose to
get the resulting pose videos. The videos we used mainly
have 4 to 5 minutes duration with 1920 1080 resolution.
Next, the pictures from these videos were generated as our
source and target dataset. We used different videos for our
source to test synthesize the target subject on different mo-



tions, and our target video including 5000 images. Some of
our target video frames can be seen in figure 2. The network

Figure 5. The trends for the losses

architecture follows the pix2pixHD [13] architecture. We
used 20 epochs to train the generator and discriminator. For
hyperparameters we used λP = 5 and λFM = 10. It took
about one day and half for training over 5000 images. The
figure 5 pictures our losses trends. We validate our training
on 275 images and get the G-smooth:0.416, G-FM:0.237,
G-P:0.698, D-fake:0.1678 and D-real:0.172.

5. Results
We tested our model qualitatively and quantitatively.

5.1. Qualitative results

You can see some of our results for background de-
tection part in figure 6. On the left column we have a
random video frame, and on the right we see the estimated
background for that video. Our background is not perfect
for some parts like the curtain for the first video and
the floor for the second video, because our background
detection method is very sensitive to subject’s movements.
If the subject doesn’t move uniformly from side to side the
model can’t capture some background pixels correctly, and
we will end up with some of the foreground pixel values in
the background as you can see in figure 6.

For background detection part we had issues with mem-
ory, and didn’t have enough space for loading all video
frames in memory and computing the median. Hence, in
practice we choose one frame from every k subsequent
frames and take the median of selected frames for comput-
ing the background. That is another reason that we don’t
have perfect backgrounds. The more frames we have, the
more accurate background we expect our method to give.
Transfer results for multiple source and target subjects can
be seen in Figure 7. We have shown our intermediate and fi-
nal pose and background transfer results for two source sub-
jects and one target subject in three different frames. In the

Figure 6. Detected backgrounds from the input video frames.

final synthesized images shown in the last column of Fig-
ure 7, you can see that the pose and background are coming
from the source video and the subject’s appearance comes
from the target video. As you can see in the picture 7 some
body parts such as face is not generated with a high quality
since the face is very detailed and hard to synthesize. In [6]
they propose a separate pipeline for generating faces that
yields more realistic results with higher quality, however
we didn’t take use of that due to our limited time. Besides,
we can see that feet of the person is not synthesized accu-
rately for the sample target subject. The reason is that some-
times the model ends up keeping some of the foreground
pixel values in the background particularly when the subject
doesn’t move much in diverse directions, that causes having
poor segmentation masks for the target subject. Therefore,
the final blending and synthesizing wouldn’t be perfect.

5.2. Quantitative results

We evaluated our model using Mean Per Joint Position
Error (MPJPE) metric and compare the results with the
baseline that you can see in table 1. In our framework,
this metric calculates the Euclidean distance between the
source frame pose and the pose extracted from the synthe-
sized frame, that can measure how accurate our pose trans-
fer results are. As you can see in the table 1, our error is
larger than the baseline model, however we are using the
same method as the baseline paper for generating a person
condition on the pose. We guess that the difference is due
to having an extra step in our model for blending the fore-
ground and background, as our masks are not very accurate
in some small and detailed parts like feet.



Figure 7. Transfer results. The top image is one random target frame, from which we get the foreground appearance. The first column
is source video frames, the second column is extracted pose stick figures from the source frames with Openpose, the third column is
segmentation masks corresponds with each frame, and the fourth column is our final background and foreground blending results.

6. Discussion and Conclusion

In general, we could generate arbitrarily long, and good-
quality videos of a target person dancing given the move-
ments of a source dancer. To transfer the motion, we ex-
tract poses from the source subject with pre-trained Open-

pose model and apply the pose-to-appearance mapping to
generate the target subject, and finally we blend the target’s
foreground with the source video’s background with respect
to the segmentation mask. The framework is very simple,
however, it suffers from several limitations.
As mentioned before, highly detailed parts such as faces



Method MPJPE
Baseline 0.0073
Ours 0.0102

Table 1. Results of MPJPE metric for our model compared and the
baseline model in m.

are not generated with a good quality. In future, a sepa-
rate pipeline like FaceGan [6] can be used for generating
higly-detailed regions. Another limitation is that the as-
sumption of having a static background and a foreground
that moves diversely in different directions for our back-
ground detection method is very strong. In practice, there
are not much videos which satisfies this constraint, that
could affect the quality of the background and segmentation
mask negatively. Hence, in future, another techniques for
background detection and segmentation such as Mask R-
CNN [11] could be tested. Nevertheless, the model is able
to generalize to new motions fairly well from the training
data. The source subject could perform any arbitrary dance
moves and the target subject also does not need to perform
similar motions to any source. The model itself generalizes
well to a wide range of source and target motions. However
the model sometimes struggles to extrapolate to different
poses. For example, artifacts can occur if the source motion
contains poses such as handstands if the target training data
did not contain such upside-down poses. Future work could
focus on the training data, i.e. what poses and how many
are needed to learn an effective model or which training ex-
amples are most influential.
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